List of videos

Sponsor Presentations - What Experienced Developers Find Challenging About Python (Bloomberg)

Full title: Sponsor Presentations: Python Code vs. Pythonic Code: What Experienced Developers Find Challenging About Learning Python (Sponsor: Bloomberg) Presented by: Heather Crawford Python has a reputation for being very easy to learn. Despite this, experienced developers often struggle with working as effectively with Python (e.g., writing Pythonic code) as they are with other programming languages with which they are more familiar. This talk will leverage the experiences of a professional trainer to demystify this dichotomy with the goal of understanding the motivating reasons for it, and making suggestions on how to help developers new to Python move quickly from writing Python code to writing Pythonic code. Slides: https://pycon-assets.s3.amazonaws.com/2024/media/presentation_slides/157/2024-05-15T13%3A35%3A47.352866/pycon_learning_python_difficulties.pdf

Watch
Sponsor Presentations - Python Powered Serverless Observability (Sponsor: Capital One)

Presented by: Brian McNamara Dan Furman Join Capital One for a presentation about Python and how it continues to power the majority of the serverless world. From each of the major cloud providers and across functions to big data, the common denominator is Python. This means that a growing segment of Python developers are serverless developers as well. In this session, we’ll explore the community libraries that exist to improve application observability. We will walk through Using Python to build an example service Leveling up the observability through Logging Metrics Telemetry Observability using cloud-native services Observability using Open Telemetry (OTEL) Step-by-Step Instrumentation of code As an attendee of this session, you’ll walk away with an understanding of how to approach making your serverless development observable by design and what some of the basic tools available to you look like as they function and you scale your services. Slides: https://pycon-assets.s3.amazonaws.com/2024/media/presentation_slides/149/2024-05-13T21%3A05%3A18.463410/slides-export.pdf

Watch
Sponsor Presentations - Build an Intelligent Python App, No Infra Hassles! (Sponsor: Microsoft)

Presented by: Anthony Chu Devanshi Joshi Level up your Python game and build intelligent applications without breaking a sweat over infrastructure woes. In this session, explore how to take your Python app from code to cloud on a serverless containers platform – Azure Container Apps, with no containerization knowledge needed. Leverage its built-in resilient platform capabilities to build APIs with popular frameworks like FastAPI. Fulfill your ML needs for frameworks like PyTorch with its GPU compute options. Easily integrate with Azure OpenAI to build LLM-based applications for scenarios like RAG, chatbots and more, as well as mitigate any risks to your security posture with Azure Container Apps. Join us for an end-to-end development to deployment experience on how to build an intelligent Python app. Slides: https://pycon-assets.s3.amazonaws.com/2024/media/presentation_slides/145/2024-06-11T18%3A46%3A49.344656/Build_an_Intelligent_Python_App_No_I_LDCcWAs.pptx

Watch
Sponsor Presentations - Introducing Pydantic's new platform (Sponsor: Pydantic)

Presented by: Samuel Colvin Come and be the first to hear about what the Pydantic team have been building! We will make a public announcement before PyCon US about what we're building, and in this presentation we'll explain all and give a demo. Slides: https://pycon-assets.s3.amazonaws.com/2024/media/presentation_slides/143/2024-05-16T18%3A33%3A38.451009/pydantic-presentation.pdf

Watch
Welcome to PyCon US 2024

Welcome to PyCon US 2024 from Conference Chair, Mariatta Wijaya and Python Software Foundation Executive Director, Deb Nicholson 00:55 - Welcome to PyCon US 2024 from Conference Chair, Mariatta Wijaya 21:40 - Sponsor Greeting - NVIDIA 24:14 - Sponsor Greeting - AWS 28:45 - Welcome to PyCon US 2024 from the PSF Executive Director, Deb Nicholson 40:30 - Sponsor Greeting - Fastly

Watch
Keynote Speaker - Jay Miller

Jay Miller is a Developer Advocate and has been involved in the Python community since 2014. A product of the San Diego Python Community, Jay was introduced to the power of community early in learning and has served as an organizer for San Diego Python, WeAll.JS, Operation Code and Global CFP Diversity Day. Away from Python, Jay is a Husband and Father. They are also the cohost of Conduit, a system-agnostic approach to accountability and productivity that has helped people accomplish everything from cleaning out that pile of laundry on their bed to publishing a book and getting married. In 2023, Jay started Black Python Devs as an online community for Black, Colored, and Coloured Python developers. Today Black Python Devs has hundreds of members from around the world ranging in all levels of their career with Jay serving as the community's Executor.

Watch
Talks - Vinicius Mendes: Continuous Deployment and Release of Django Apps

If you have a Django app in production and you need to evolve it, how do you ensure your app will keep running while you refactor your models, run migrations, deploy partially implemented features, and change your APIs' contracts? In this talk, I will present strategies my team has applied for all these scenarios with safe migrations, feature flags and switches, and intermediary API contracts. Slides: https://pycon-assets.s3.amazonaws.com/2024/media/presentation_slides/126/2024-05-20T22%3A40%3A10.394725/PyCon_US_May_17_2024_Django_continuo_ZWBYJn8.pptx

Watch
Charlas - Raúl Cumplido: Apache Arrow - El format columnar! Lo cualo?

Escuchamos que Apache Arrow se ha convertido en un estándar de facto para la representación eficiente de datos columnares en memoria. ¡¿Pero, qué significa esto realmente?! Basado en la documentación de Apache Arrow: - es una plataforma de desarrollo para análisis en memoria - permite que los sistemas de big data procesen y muevan datos rápidamente - especifica un formato de memoria en columnas estandarizado e independiente del idioma para datos planos y jerárquicos. Hay un poco más de información ahí, pero todavía no es fácil de digerir, ¿verdad? En esta charla pretendemos arrojar algo de luz sobre los conceptos básicos de Apache Arrow como formato de columnas. Revisaremos los diferentes diseños de memoria física y los tipos lógicos, profundizando en ellos. Esta charla también cubrirá los conceptos básicos de serialización y comunicación entre procesos (IPC), junto con los tipos de extensión canónica y otras estructuras de datos como matrices multidimensionales tensoriales. La charla pretende ser un ejercicio para comprender la representación física de los datos. Proporcionará ejemplos y mostrará cómo se representan realmente los buffers en la memoria.

Watch
Charlas - Maria Jose Molina Contreras: Personalizando LLMs: Guía para “Fine-Tuning” local de...

Título completo: Personalizando LLMs: Guía para “Fine-Tuning” local de modelos Open Source en Español Presented by: Maria Jose Molina Contreras En el mundo actual, los modelos de lenguaje grandes (LLM, en inglés) están revolucionando cómo interactuamos con la tecnología, permitiendo tener conversaciones, organizar datos, redactar textos, y otras actividades con mínimo esfuerzo humano. Es probable que al usar algún LLM hayas recibido respuestas incorrectas ¿a qué se debe eso? Durante el entrenamiento de estos modelos, suelen ingerir grandes cantidades de texto sin etiquetar de fuentes como libros, páginas web, foros, los cuales desarrollan un gran entendimiento de conocimiento pero carecen de conocimientos específicos. Por este motivo ajustar modelos (“Fine-Tuning”, en inglés) que han sido pre-entrenados con este gran corpus de datos es crucial para: (1) obtener mejor rendimiento en la calidad de respuestas, y (2) ajustar el modelo a un dominio específico al proporcionar textos específicos para que puedan especializarse. Entonces, ¿Por qué es necesario entender el “Fine-Tuning” en modelos locales? Dentro de los diversos motivos, uno de los más relevantes es la privacidad de datos. Puesto que al hacer el proceso de “Fine-Tuning” localmente se puede enseñar al modelo datos que son privados, como datos personales, datos clínicos, información confidencial de empresas, etc. En esta charla, los asistentes aprenderán paso a paso cómo modelos LLM Open Source, como Mixtral-8x22B-v0.1, Mistral-7B (multi lenguaje), bloom-7b u otros modelos, son opciones muy interesantes para aprender a realizar “Fine-Tuning” y especializar modelo para el dominio específico. Además, se compartirá el rol de Python del proceso, la aplicación de módulos externos para tener una implementación simple, para realizar “Fine-Tuning” de LLMs. Conocimientos generales de Data Science son recomendables para seguir la temática con facilidad, aunque se explicará de manera simplificada y yendo por todos los pasos para entender cómo se realiza “Fine-Tuning”. Outline añadido en la sección Notes.

Watch