Talk (Data - Day 2) - Is the news media polarized? Or are we conditioned to think it is?
Abstract: In this talk, we aim to find if polarization is induced in a neural network by feeding it newspaper articles with manufactured sentiments according to the Allsides Media Bias chart for the level of faith people on various aisles of the political spectrum. This project consists of a set of experiments on similar data-sets from news agencies across the various subsets in the ”media-bias” chart. News Media perceived bias is common across consumers that belong to various political affiliations. While anecdotal evidence of this exists and there exist annotated datasets that aim to annotate the ”spin” a news agency puts on certain events and entities, whether this is a widespread problem and whether it can be detected by the neural network topically or temporally is a problem that needs to be explored. The news media bias analysis is modelled as a Natural Language Processing sentiment analysis task and a fake news binary classification task to deduce the level of polarization in a neural network by feeding it headlines embedded using pre-trained sentiment models from news publications across the political spectrum. When it came to fake news vulnerability, news from all kinds of perceived politically affiliated news media holds up well against a fake news dataset with a very good accuracy. None of the accuracies dropped below 95%. This is a significant result that sort of debunks the AllSlides Media categorization - if taken as simplistically as it is presented. These experiments can be extended to include entity based topical studies in the future and to also educate the populace about their perceived biases. For more details: https://pretalx.com/pycon-sweden-2021/talk/9GGSNU/ Speaker: Aroma Rodrigues